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An Efficient Technique for Computing the
Potential Green’s Functions for a Thin,

Periodically Excited Parallel-Plate
Waveguide Bounded by Electric

and Magnetic Walls

WILLIAM F. RICHARDS, MEMBER, IEEE, KIM MCINTURFF, AND PETERS. SIMON

Abstract —An e~jicierst formulation is described for calculating all vector

and scalar potential Green’s functions for a thin, infinitely long wavegnide

with periodic excitation. The Green’s functions are represented by the first

few terms of the modal expansion plus a quasi-static correction. This

allows one to compute the Green’s functions over a wide band of frequen -

ties with little additional effort over that required for a single frequency.

An attractive feature of the method is that the l/R free-space singularity

exhibited by the potentials is explicitly extracted in the lowest order

quasi-static term. Tfris is convenient for evaluating method-of-moments

self-term contributions in closed form. The Green’s functions have applica-

tion for problems involving stripline structures such as Rotman lenses.

I. INTRODUCTION

I NFINITE-ARRAY theory [1], in combination with the

method of moments [2], provides a powerful means of

analyzing large periodic structures. For instance, Pozar

and Schaubert [3] used this technique to study an array of

microstrip antennas. The difficulty with this method is that

one must have available an efficient means to compute the

infinite-array Green’s function needed in the moment-

method procedure. In this paper, we describe how to

efficiently compute the scalar and vector potential Green’s

functions for a periodically excited waveguide bounded by

magnetic and electric walls. This particular application

arose from consideration of a stripline Rotman lens struc-

ture, to be described in a later communication.

The acceleration of the Green’s functions involves the

following steps. First, the Green’s functions are expanded

into a spectral series. Second, the contributions due to all

but the first few resonant modes are accounted for by

three quasi-static terms, the lowest order of which contains

the source singularity. This decomposition into quasi-static

and dynamic terms is similar in principle to the technique

described in [4]. The resulting expression then contains a
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few (possibly zero) modes and a second-degree polynomial

in the frequency squared representing the quasi-static con-

tribution. Once the coefficients of this polynomial are

determined, the evaluation of the Green’s function be-

comes trivial, so that analysis over a wide band of frequen-

cies becomes efficient. Third, the coefficients of the quasi-

static terms are represented by very slowly converging

spectral series. These series have been highly accelerated,

making their evaluation also efficient.

II. FORMULATION OF THE GREEN’S FUNCTIONS

A unit cell of the periodic structure under consideration

is depicted in Fig. 1. The rectangular waveguide is bounded

at z = O, z = u, and y = h by perfect electric conducting

(PEC) walls and at y = O by a perfect magnetic conducting

(PMC) wall, while the Floquet walls at 1x1= w/2 bound

the extent of a single period in x. The excitation is taken

to be uniform in amplitude, with linear phase variation in

the x direction of the form eJ8-x(assuming an eJ”t time

convention). Thus, any rectangular field component U

must satisfy the periodicit y condition

U(w/2, y,z)=U(– w/2, y,z)e~Bw (1)

where w is the x dimension of the unit cell. This forms

what is, in effect, a cavity. The cavity occupies volume

P’= ahw and is filled with homogeneous dielectric material

of permittivit y c and permeability p. The wavenumber in

the dielectric is k.

The various potentials are related to the electric and

magnetic fields in the cavity via

~=–jul–V@+:VXF (2)
c

~=jtiF-V’J!+iVXl. (3)
P

In the above equations, ~ is the magnetic vector potential,

@ the electric scalar potential, ~ the electric vector poten-

tial, and Y the magnetic scalar potential. The potentials

are taken to satisfy the Lorentz gauge, so

(v2+k2)~=-p~ (4)
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Fig. 1. The unit Floquet cell showing the periodic phase shift (Floquet)
walls at Ix 1= w/2 and perfect electric and magnetic conducting walls at

the remaining boundaries. This structure is derived from that of a
stripline with ground plane spacing b = 2 h by considering the symme-
try of the fields about y = O.

and

(5)

(v2+k2)F=m (6)

(7)

where ~ and p are the electric current and charge densities,

respectively, and ~ and pm are the corresponding mag-

netic quantities.

By a straightforward extension of [5], we may take the

bound’hry conditions to be as stated in Table I. The

Green’s functions can be expanded as series of eigenfunc-

tions using standard techniques [6]. After some algebraic

manipulations, the following expressions for the Green’s

functions are obtained:

Ax=@l-22-x3+x4) (8)

Ay=#-21+x2-23+&) (9)

AZ=$(–21–22+X3+X4) (lo)

FX=; (–21–X2–23–X4) (11)

FY=; (X1+ X2– X3–24) (12)

(13)

(14)

‘1= +(21+22+%+24). (15)

Note that the symbols used on the left-hand sides of

TABLE I
BOUNDARY CONDITIONS ON POTENTIALS

,,
(8)-(15) have now been redefined to represent potential

Green’s functions rather than the actual potentials. The

modal series Z. is defined fors = 1, 2, 3, and 4 by

m m w J(L%+&. )

where

k (n)= (n+~)m 2m7r

Y h
kX(wz) = — +~ k=(l)=:

w

(17a)

.X~ = X2 = X3 =X4=.X-X’ (18)

Yl=h=zh-(y+y’) ~S=-Y4=J7’-y (19)

Z~=Z~=Z+Z’ Z2=.Z4= Z-Z’. (20)

The field observation point i = (x, y, z ) and the source

point ~’= (x’, y’, z’), are both within or on the boundary

of the rectangular cavity. The problem of calculating the

Green’s functions has now been reduced to efficiently

evaluating X, for s =1,2,3,4. This task is addressed next.

The series in (16) is slowly convergent and unsuitable

for numerical evaluation. Our strategy for accelerating (16)

is essentially a Kummer’s transformatioa~ [7]. The sum-

mand is approximated by” a smooth function possessing a

Fourier transform in the summation indices. This “regular

asymptotic equivalent” is then accelerated by means of the

Poisson summation formulaJ8].’

Let N= {0,1,2,0’””), N={. ””, –2, –1,0,1,2, ”””},

and k~u be the wavenumber k in the cavity at the highest

frequency of interest. For & >0, define

(Note that @’. is just the set of all mode indices.) Thus,

our choice of ~ partitions the three-dimensional summa-

tion lattice X x N x ,fi into a finite (2$) and an infinite

(.@&) region. If& ‘is chosen suitably larger than 1, then the
factor l/(k~n, – k2) can be approximated for ~1 (~, n, [)

= tit as

1
= i “q&.

k:.[–k2 ~=.
(23)

Note that choosing all the a~’s tobe 1 would be equivalent
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to a truncated Maclaurin expansion. However, such a

choice would not represent an optimal selection of the

coefficients for the purpose of minimizing the maximum

error of the truncated sum. We fix & = 2 and truncate (23)

at p = 2. We also select aO =1 to recover the exact solu-

tion when k + O. The remaining coefficients are al=

0.957641 and az = 1.486178; these were numerically de-

termined to minimize the maximum error in the right-hand

side of (23) for k between O and k~=. For these choices,

the maximum relative error is less than 0.1 percent. The

Kummer’s transformation is now applied to (16):

do \

. #k..xs-

(=~Cos
26

. ~j(k%+kz+) )+~aqk2qSq(~,) (24)
q=o

where

~s=(~,, Ys>zs) (25)

and

is defined for q = 0,1,2. Itshould be emphasized that the

sum over &$ in (24) is finite. In fact, for thin cavities, &’f

may actually be empty, as in the example c,= 2.2, ~~= =

15 GHz, and h = 1/16 inch (0.159 cm). Thus, our strategy

will be successful if S~ can be efficiently evaluated.

The convergence of Sq will be accelerated by applying a

Poisson transformation first to the summation indices m

and 1. The summand

fqn,(m,l) = - ,20+2 (27)

is a smooth, slowly decaying function of its arguments

(which are now considered to be continuous variables

defined over the range (– m, co)), implying that its Fourier

transform, defined by

is a highly peaked, rapidly decaying function of its argu-

ments. Evaluation of the Fourier transform is accom-

plished in the Appendix. The Poisson summation formula

then states that

~ ~ fq..(m,l) = E ~ Fq.,(2~m,2~l)
~= —m[=. w ~=–ml=_w

(29)

Putting (29) into (26), we find that

.5 cos(kYy.)kjqKq( kYp,~/) (30)

where

PSml= (x, + m~)2+(z,+2~a)2 (31)

and Kq is the modified Bessel function of order q.

Most of the terms in (30) can be neglected without

serious error, due to the rapid exponential decay of Kq.

We ignore terms for which p,~l > 100h and directly sum

those terms for which h/2 < p~~l < 100h, in which region

the sum converges rapidly. However, for P.ml < h /2, the

sum over n in (30) is slowly convergent and actually

diverges as p~~l * O. This is not unexpected, since the

potentials must exhibit the same singularity as the free-

space Green’s functions, a singularity proportional to
,j - ~1,-1

It is possible to accelerate the convergence of the sums

Sn,q(~,) = ~ k~qcos(kYy,)Kq( kYp~~l)
~=o

= ~ ~ lkY1-qcos(kYy~) Kq(lkYlp,~/) (32)

for small values of p,~l/h and extract the free-space

singularity as an explicit term. This is accomplished by yet

another application of the Poisson summation formula.

Beginning with q = O, we define the Fourier transform

The transform is evaluated with the aid of [9, eq. (6.699-4)],

which results in the following formula for S~lo:

[

hl—— (—+5(–1)” ++R 1
~ R,~o[ ~ =1

smnl sm(–n)[ )1
(34)

with

R Sn./=~(Y, +2nh)2+ p;~l . (35)

We see that for m = n = 1= O and ~ =4, the first term in

brackets in (34) is the free-space singularity. That this term

can be explicitly extracted from the Green’s functions is
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very desirable for application to moment-method prob-

lems, where the self-term contribution of the singularity

can be integrated in closed form [10]. When the sums are

combined fors = 1 and s = 3 and fors = 2 and s =4, they

represent the multiple-image expansion of the field due to

a static charge in a parallel-plate waveguide, one with a

magnetic wall and an electric wall. (The static “magnetic

wall” is one for which the normal component of the

electric field vanishes.) These series can actually be summed

explicitly in terms of the Digamma function [11], although

we choose a different method of accelerating these sums,

as described below.

Proceeding now to the case q =1, we encounter a diffi-

culty in evaluating the Fourier transform due to the nonin-

tegrable singulari~y at n = – 1/2 in the function

1

—cos(~,Y,)~l(l~YIPsml)lkYl

In order to proceed, we define the well-behaved

function

auxiliary

with

%(~)=i(n+oz+az,Ll>o. (37)

Then

Smll(ll,) = lilioYm[l(i., a) (38)

and we require the Fourier transform of the function

%dlsa(n) = $ cos(k,Y.)Kl(;~nPsm/). (39)

Evaluating the required integral with the aid of [9, eq.

(6.726-4)] yields

f%[l(~s> ~) = & *=:W (-l) ne-’’s””’ (4(-J)
sm

with v = aT/h. To facilitate taking the limit of (40) as
v ~ (), we expand R~~~, as follows:

R smnl =21nlh+ y,sgn(n)+O(n-1) (41)

where sgn is the signum function and O is the Landau

symbol. We now define

Xsmnl = ‘smnl –w~-yswn(~)> lrzl >0 (42)

and wlite

—vR –2h[nlve–vy, Sgn(n)e–uXsmn/
e sm./ = e

=e [
–2hlnp-v Yssgn(.) 1 — vx~mn, + 0(V2)] . (43)

By using the expansion (43) in (40), we can collect coeffi-

cients of nonvanishing powers of v and then perform the

indicated limit. The result is (hereafter, summation sym-

bols lacking limits are understood to be over the limits

-=.
279

n=lton= co)

[. h – R,mO, – z(-l)n(xsm,-n), -~xsmn,)] ~ (44
A similar derivation yields

– YsZ(–l)n(Xgrn-n){– X~mnl )

+ y~2~(–l)n(XSm(–n){ + X.smnl )

1+4h2~(– l)”rz2(W~m(_n), +W~mnl) (45)

where W~mn[is defined by

dml + YsP:ml
w — ~W(4.“’’”1= ‘smn/–41nlh

(46)

The alternating sums appearing in (34), (44), and (45)

are accelerated by means of a Kummer’s transformation.

This is demonstrated here for 5“~10only. The summand in

(34) is expanded in a Maclaurin series in the variable l/n,

yielding

1
—+
R smnl

R,:_M),=(w

1
+ ~ (2YS2– P?mf)(nh)-3-t O(n-5). (47)

The accelerated sum is then

[
Smlo(li,) = ; & –q(l)h-1–:q(3)l(2 y;–p&,)h-3

smOl

{

1
+~(–l)n &+=–– (nh)-l

smn[ Sm(–n)l

- :(M-P:mw)-3 }1 (48)

where

q(k) =~(–l)n+lk-” (49)

is a sum related to the Riemann zeta function and is

tabulated in [12]. Similar techniques are used to accelerate

the remaining sums.

III. CONCI,USIONS

An efficient technique for evaluating the cavity potential

Green’s functions has been described. It is efficient for two

reasons. First, its frequency dependence is represented by
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the contribution due to a few (often zero) lower order

modes of the cavity plus that due to what amounts to three

quasi-static terms (q= 0,1, 2). Once the coefficients of the

quasi-static terms have been determined, the Green’s func-

tion can be computed for many different frequencies with

little additional expense. In this sense, we can call the

expansion broad band. Secondly, although the spectral

representations of the coefficients of the quasi-static terms

are very slowly converging, we have accelerated their con-

vergence so that even these can be efficiently computed.

The singular part has been extracted as an explicit term,

which makes the formulation attractive for use in situa-

tions where the singularity must be integrated in closed

form.
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APPENDIX

THE FOURIER TRANSFON OF ~qn,(nz, 1)

The integral to be evaluated is

. .
1972, p. 811.

/-w ~m e-i[(x, +(w/2~)$)u+ (z, +(a/m)q)u]

“J_mLm (zP+u2+ky+1
dudu.

(Al)

(A2)

(A3)

(A4)
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“J
cc 2rrr

[f 1~‘cos(rp, cosd) dd dr. (A5)
O (r2+k~)q+1 ~ Q

Recognizing the expression in brackets as an integral rep-

resentation of the Bessel function of order zero evaluated

at rp~, we have
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,.. —-- .—-------
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