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An Efficient Technique for Computing the
Potential Green’s Functions for a Thin,
Periodically Excited Parallel-Plate
Waveguide Bounded by Electric
and Magnetic Walls

WILLIAM F. RICHARDS, MEMBER, IEEE, KIM MCINTURFF, axDp PETER S. SIMON

Abstract — An efficient formulation is described for calculating all vector
and scalar potential Green’s functions for a thin, infinitely long waveguide
with periodic excitation. The Green’s functions are represented by the first
few terms of the modal expansion plus a quasi-static correction. This
allows one to compute the Green’s functions over a wide band of frequen-
cies with little additional effort over that required for a single frequency.
An attractive feature of the method is that the 1 /R free-space singularity
exhibited by the potentials is explicitly extracted in the lowest order
quasi-static term. This is convenient for evaluating method-of-moments
self-term contributions in closed form. The Green’s functions have applica-
tion for problems involving stripline structures such as Rotman lenses.

I. INTRODUCTION

NFINITE-ARRAY theory [1], in combination with the

method of moments [2], provides a powerful means of
analyzing large periodic structures. For instance, Pozar
and Schaubert [3] used this technique to study an array of
microstrip antennas. The difficulty with this method is that
one must have available an efficient means to compute the
infinite-array Green’s function needed in the moment-
method procedure. In this paper, we describe how to
efficiently compute the scalar and vector potential Green’s
functions for a periodically excited waveguide bounded by
magnetic and electric walls. This particular application
arose from consideration of a stripline Rotman lens struc-
ture, to be described in a later communication.

The acceleration of the Green’s functions involves the
following steps. First, the Green’s functions are expanded
into a spectral series. Second, the contributions due to all
but the first few resonant modes are accounted for by
three quasi-static terms, the lowest order of which contains
the source singularity. This decomposition into quasi-static
and dynamic terms is similar in principle to the technique
described in [4]. The resulting expression then contains a
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few (possibly zero) modes and a second-degree polynomial
in the frequency squared representing the quasi-static con-
tribution. Once the coefficients of this polynomial are
determined, the evaluation of the Green’s function be-
comes trivial, so that analysis over a wide band of frequen-
cies becomes efficient. Third, the coefficients of the quasi-
static terms are represented by very slowly converging
spectral series. These series have been highly accelerated,
making their evaluation also efficient.

II. FORMULATION OF THE GREEN’S FUNCTIONS

A unit cell of the periodic structure under consideration
is depicted in Fig. 1. The rectangular waveguide is bounded
at z=0, z=a, and y=h by perfect electric conducting
(PEC) walls and at y = 0 by a perfect magnetic conducting
(PMC) wall, while the Floquet walls at |x|=w /2 bound
the extent of a single period in x. The excitation is taken
to be uniform in amplitude, with linear phase variation in
the x direction of the form e/#* (assuming an e/“’ time
convention). Thus, any rectangular field component U
must satisfy the periodicity condition

U(w/z’yaz)=U(—w/27y’z)ej'3w (1)
where w is the x dimension of the unit cell. This forms
what is, in effect, a cavity. The cavity occupies volume
V' = ahw and is filled with homogeneous dielectric material
of permittivity e and permeability u. The wavenumber in
the dielectric is k.

The various potentials are related to the electric and
magnetic fields in the cavity via

- _ 1 _
E=—jod—-v®+—-v XF (2)
€

— 1 ‘
H=joF-v¥+-v X 4. (3)
M

In the above equations, A4 is the magnetic vector potential,
@ the electric scalar potential, F the electric vector poten-
tial, and ¥ the magnetic scalar potential. The potentials
are taken to satisfy the Lorentz gauge, so

(V2+ k) A=-pJ (4)
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Fig. 1. The unit Floquet cell showing the periodic phase shift (Floquet)
walls at x| =w /2 and perfect electric and magnetic conducting walls at
the remaining boundaries. This structure is derived from that of a
stripline with ground plane spacing b=2h by cons1der1ng the symme-
try of the fields about y 0.

and.
(Vi4kD)d=—2
€

(5)
(6)
(7

where J and p are the electric current and charge densities,
respectively, and M and p,, are the corresponding mag-
netic quantities.

By a straightforward extensmn of [5], we may take the
boundary conditions to be as stated in Table 1. The
Green’s functions can be expanded as series of eigenfunc-
tions using standard techniques [6]. After some algebraic
manipulations, the following expressions for the Green’s
functions are obtained:

(V2 + k) F=eM

(v? +k2)~1f——p—'"
‘U,

Ax¥%(21—22—23+24) (®)
(9)
(10)
(11)
(12)

(13)

| Ay=%/(——21+22—23+24) |
Az=2—’%(—21—22+23+24)
Fx=527(_21_22"23_24)
Fy=—;7/(21+22—23—24)
F,= %/(21‘_ E2‘4"'23."24)
S, +3,) |

1 ;
®=ﬁ(21”‘22_ (14)

(15)

Note that the symbols used on the left-hand sides of

1 '
¥ = W(21+22+23+24)—
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TABLEI
BOUNDARY CONDITIONS ON POTENTIALS
PEC Wall PMC wall
B=0 - ¥=0
av a0
——=0 =
an_ . _ an_
AXxA=0 AXE=0
V., A=0 Vi F=0 _
AX(VXF)=0 #AX(VXA)=0
A-F=0 - fA-A=0

(8)—(15) have vnowb been redefined to represent potential
Green’s functions rather than the actual potentials. The
modal series 2, is defined for s ~1 2,3, and 4 by

) eJ(k xs+k,z5)

- f( L) YOS & (16)

m=-—-00 I=—0c0 mnl
where
(n+di)w ' 2mm Im
= = et l)=—
y(n) =TT k(m) == B k()=
(17a)
kmn,—k2-l~k2+k2 (17b)

(18)
(19)
(20)
The field observation point 7= (x, y,z) and the source
point 7= (x’, y’, z’), are both within or on the boundary
of the rectangular cavity. The problem of calculating the
Green’s functions has now been reduced to efficiently
evaluating = for s=1,2,3,4. This task is addressed next.

The series in (16) is slowly convergent and unsuitable
for numerical evaluation. Our strategy for accelerating (16)
is essentially a Kummer’s transformation [7]. The sum-
mand is approximated by a smooth function possessing a
Fourier transform in the summation indices. This “regular
asymptotlc equivalent” is then accelerated by means of the
Poisson summation formula [8]

Let N={0,1,2,---}, N= { 1012 }
and k_,, be the wavenumber k'in the cav1ty at the hlghest
frequency of interest. For £>0, defme

= {(m, n, l)eNxNxN kmn,>§kmax} (21)
= {(m,n, l)eNxNxN km,,,\gkmax}

()

(Note that 7, is just the set of all mode indices.) Thus,
our choice of ¢ partitions the three-dimensional summa-
tion lattice N X N X N into a finite (&4) and. an infinite
(#Z,) region. If £ is chosen suitably larger than 1, then the
factor 1/(k2,,— k?*) can be approx1mated for all (m,n, 1)
€ &7, as ,

X, —x2 Xq=

yi=y,=2h~— (y+y) 3=
il—z3—z+z

Ya=y' =y

Zy=2,=2-12.

“2—{5=Mo—

1 k24
k l‘_ k2 ] Z()aq k2q-}-2 B (23) )
mn A q mn : .

Note that choosing all the a;’s to be 1 would be equivalent
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to a truncated Maclaurin expansion. However, such a
choice would not represent an optimal selection of the
coefficients for the purpose of minimizing the maximum
error of the truncated sum. We fix £ =2 and truncate (23)
at p=2. We also select a,=1 to recover the exact solu-
tion when k — 0. The remaining coefficients are a;=
0.957641 and a,=1.486178; these were numerically de-
termined to minimize the maximum error in the right-hand
side of (23) for k between 0 and k. For these choices,
the maximum relative error is less than 0.1 percent. The
Kummer’s transformation is now applied to (16):
1

k%
k2 qk2q+2

mnl q=0 mnl

Mw

s=Y {cos(kyys)(

)

14 —
.ej(k.\xs+kzzs)} —+ E aqk2qu(Rs)
q=0

~ ;{cos(kyys)(;——1—~

mnl q

p —_—
.eJ(kxxs+k,z5)} + Z aqk2qsq(Rs)
q=0

where

(25)

is = ('xs’ ys’ Zs)
and

Sq(ﬁs)= éocos( yys) =§ i:

e/leexstk,z,)

(26)

2g+2
kmnl

is defined for q= 0,1,2. It should be emphasized that the
sum over .sei in (24) is finite. In fact, for thin cavities, Mg
may actually be empty, as in the example ¢, = 2.2, f, ..
15 GHz, and 4 =1/16 inch (0.159 cm). Thus, our strategy
will be successful if S, can be efficiently evaluated.

The convergence of S, will be accelerated by applying a
Poisson transformation first to the summation indices m
and /. The summand

e Ueux,tk.z,)

fqns(m’l) = k2q+2 (27)
mni
is a smooth, slowly decaying function of its arguments
(which are now considered to be continuous variables
defined over the range (~ oo, 00)), implying that its Fourier

transform, defined by
Fo.(¢,m) = f f fq,,s(m [)e/ @m0 dmd] (28)

is a highly peaked, rapidly decaying function of its argu-
ments. Evaluation of the Fourier transform is accom-
plished in the Appendix. The Poisson summation formula

then states that

D> Jons(m, 1) = D) Fopymm,2ml).

m=—oc0 I=—o0 m=-—00[l=—00
(29)

Putting (29) into (26), we find that

aw
—jmfBw
5,(R)= 2= L% ste

/=~

X con(y )k K, (k) (30)

where

Ospt = \/(xs + mw)2+(zs +2la)2

(31)

and K, is the modified Besse! function of order 4.

Most of the terms in (30) can be neglected without
serious error, due to the rapid exponential decay of K.
We ignore terms for which p,,,, >1004 and directly sum
those terms for which % /2 <p,,,; <1004, in which region
the sum converges rapidly. However, for p_,, <h /2, the
sum over n in (30) is slowly convergent and actually
diverges as p,,,— 0. This is not unexpected, since the
potentials must exhibit the same singularity as the free-
space Green’s functions, a singularity proportional to
|7 =7

It is possible to accelerate the convergence of the sums

Smlq(_Rs) k qCOS(k ys) (kypsml)

[>e]

Z Ikyl“’COS(kyys)

I

S
NlH u[VJS

K, (I, loem) (32)

for small values of p,,,,/h and extract the free-space
singularity as an explicit term. This is accomplished by yet
another application of the Poisson summation formula.
Beginning with g = 0, we define the Fourier transform

GmlOs(A)='/; COS(kyys)KO(]kylpsml)ejkndn' (33)

The transform is evaluated with the aid of [9, eq. (6.699-4)],
which results in the following formula for S,,,,,

— 1 &
SmlO(Rs) = 5 Z Gml()s(zwn)
h ad 1 1
== + 2 (-1)" +
2 RsmOI n=1 Rsmnl Rsm(-n)l ):l
(34)
with
2, 2
Rsmnl=‘/(ys+2nh) +psm1‘ (35)

We see that for m =n=17=0 and s = 4, the first term in
brackets in (34) is the free-space singularity. That this term
can be explicitly extracted from the Green’s functions is
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very desirable for application to moment-method prob-
lems, where the self-term contribution of the singularity
can be integrated in closed form [10]. When the sums are
combined for s =1 and s =3 and for s =2 and s = 4, they
represent the multiple-image expansion of the field due to
a static charge in a parallel-plate waveguide, one with a
magnetic wall and an electric wall. (The static “magnetic
wall” is one for which the normal component of the
electric field vanishes.) These series can actually be summed
explicitly in terms of the Digamma function [11], although
we choose a different method of acceleratlng these sums,
as described below.

Proceeding now to the case ¢ =1, we encounter a diffi-
culty in evaluating the Fourier transform due to the nonin-
tegrable singularity at n = —1/2 in the function

1
— COS(kyys)Kl(Ikylpsml)’
L

In order to proceed, we define the well-behaved auxiliary
function

(R, a) = L _i ;Il—cos(kyys)Kl(%nnpsm,)
B (36)
with ‘
m(e)=y(n+31)’+a?, a>0. (37)
Then
Smll(l_{s) = (}i_l)noymll(isa“) (38)

and we require the Fourier transform of the function

(39)

Evaluating the required integral with the aid of [9, eq.
(6.726-4)] yields

1 T
gmllsa(n) = ;_ COS(kyys)Kl( ;nnpsml) .

n

Y (1) e

2Vpsml n=—o00

with » =aw/h. To facilitate taking the limit of (40) as
v — 0, we expand R, as follows:

ymll(ﬁs’a) = (40)

smn

=2(nlh+ y,sgn(n)+0(n"?)

(41)

where sgn is the signum function and O is the Landau
symbol. We now define

‘Rxmnl _2|n‘h = Vs Sgn(n)?

smnl

Xsmnl = lnl >0 (42)

and write
e~ "Romnt = = 2kl =3, SEA(M) g~ ¥ Xemni
= e 2T (] —py L+ O(r?)]. (43)
By using the expansion (43) in (40), we can collect coeffi-
cients of nonvanishing powers of » and then perform the

indicated limit. The result is (hereafter, summation sym-
bols lacking limits are understood to be over the limits

2779

n=11t0 n=o00)

— h
Smll(Rs) = 2P
sml

5= Rymor= (=1 Komemyi + Xomnt)| - (44)

A similar derivation yields

Sle(I_{s)

1
——| =R, — 2+ = h3-——h
2 Sm[[S smOl ys 3 Osmi

+§Z(—1)"(x3m<_n)z+x§mnz)
+20 Y (= 1) " 1( X2y + Xrnt)
= 3 2 (=1 (Xt = Xoount)
+ 322 (=) (Kom—myt + Xemnt)
—4hy, Y (=1)"n(Xsm(=mt = Xsmnt)

+4h22( 1) ( sm(— n)1+Wmnl)

is defined by

(45)
where W.

smnl

yspgml

o; /
S sgn(n).

4inlh
The alternating sums appearing in (34), (44), and (45)
are accelerated by means of a Kummer’s transformation.
This is demonstrated here for S,,,, only. The summand in
(34) is expanded in a Maclaurin series in the variable 1/,
yielding
! + Lo (nh) ™"
Rsm(——n)l

W,

smnl

= Xsmnl — (46)

R

smnl

1 -3
+ (297 = 20 ) () 4 O(n). (47)

The accelerated sum is then

SmlO(ﬁx) = g[

1
R _"I(l)h_l_g’?(3)'(2ys2_Ps2m1)h_3
sm0/

+Z(—1)"{R1 + —(nh)"

smnl

Rsm(— n)l

- %(2% - pfm,)(nh)"}} (48)

where
(k) =X (=1)""k (49)

is a sum related to the Riemann zeta function and is
tabulated in [12]. Similar techniques are used to accelerate
the remaining sums.

III. CONCLUSIONS

An efficient technique for evaluating the cavity potential
Green’s functions has been described. It is efficient for two
reasons. First, its frequency dependence is represented by
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the contribution due to a few (often zero) lower order
modes of the cavity plus that due to what amounts to three
quasi-static terms (¢ =0,1,2). Once the coefficients of the
quasi-static terms have been determined, the Green’s func-
tion can be computed for many different frequencies with
11tt1e additional expense. In this sense, we can call the
expansion broad band. Secondly, although the spectral
representations of the coefficients of the quasi-static terms
are very slowly converging, we have accelerated their con-
vergence so that even these can be efficiently computed.
The singular part has been extracted as an explicit term,
which makes the formulation attractive for use in situa-
tions where the singularity must be integrated in closed
form.

APPENDIX
TE FOURIER TRANSFORM OF f,

| s, 1)
The integral to be evaluated is

oI ke +k,z,)

J(em+nl)
Enem) =" [ ) dmdi
x ¥y z

aw
= B /2m)

T 2n?
o e/(xFw/2myd)ut(z,+(a/m)n)v]

f / 2+02+k}%)q+1 dudv.
| (A1)
We make the substitution
u=rcosd v=rsinf (A2)
and define p (¢, 1) and ¢ (¢, 1) by
w
‘Xs+ _¢=psCOS\l/s (AS)
2
a
z,+—n=pssiny,. (A4)
T

Then
aw
qns(qb 7’) = —‘W—'e 1(¢ﬁw/277)
foo
0 (rz'_I_ki)qH

Recognizing the expression in brackets as an integral rep-
resentation of the Bessel functlon of order zero evaluated
at rp,, we have

qns(‘b 77) = --—-—e”l(‘Pﬂw/Zw)f

2 1
il [—f cos(rpscosﬂ)dﬂ]dr. (A5)

Y0

rJO ( 7P, )

g+1

T Syaridr (A6)
(7 +5)

The remaining integral can be evaluated using [9, eq.
(6.565-4)]. The result is-
wpg

qns(¢ "') = WKq(kyps)e_j(¢ﬁw/2ﬂ) (A7)
’ by

which is the desired formula.
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